A High-order Discontinuous Galerkin Scheme for Elastic Wave Propagation

نویسندگان

  • Nathalie Glinsky
  • Sarah Delcourte
  • Serge Moto Mpong
چکیده

In this paper, we introduce a fourth-order leap-frog time scheme combined with a high-order discontinuous Galerkin method for the solution of the elastodynamic equations. The time discretization, obtained via a simple construction based on Taylor developments, provides an accurate scheme for the numerical simulation of seismic wave propagation. Results of the propagation of an eigenmode allow a numerical study of stability and convergence of the scheme for both uniform and non structured meshes proving the high level of accuracy of the method. The robustness of the scheme in the heterogeneous case is studied and we also examine the propagation of an explosive source in a homogeneous half-space. Key-words: elastodynamic equation, velocity-stress formulation, discontinuous Galerkin method, high-order method, leap-frog scheme ∗ LCPC/CETE Nice and INRIA Sophia Antipolis Méditerranée, France † University of Yahoundé, Cameroon ‡ University Claude Bernard Lyon 1, France in ria -0 05 43 66 4, v er si on 1 6 D ec 2 01 0 Un schéma d’ordre élevé de type Galerkin discontinu pour la propagation d’ondes élastiques Résumé : On présente un schéma saute-mouton en temps d’ordre quatre combiné à une méthode de type Galerkin discontinu d’ordre élevé en espace pour la résolution des équations de l’élastodynamique. La discrétisation temporelle, simplement déduite de développements de Taylor, permet d’obtenir un schéma précis pour la simulation numérique de la propagation d’ondes sismiques. Une étude numérique de la stabilité et de la convergence du schéma, via l’étude de la propagation d’un mode propre utilisant des maillages uniformes et non structurés, prouve la précision de la méthode. La robustesse du schéma est étudiée dans le cas d’un milieu hétérogène et l’on s’intéresse également à la propagation d’une source explosive dans un demi-espace homogène. Mots-clés : équation élastodynamique, système vitesse-contrainte, méthode Galerkin discontinu, méthode d’ordre élevé, schéma saute-mouton in ria -0 05 43 66 4, v er si on 1 6 D ec 2 01 0 A High-order Discontinuous Galerkin Scheme for Elastic Wave Propagation 3

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media

We introduce a high-order discontinuous Galerkin (dG) scheme for the numerical solution of three-dimensional (3D) wave propagation problems in coupled elastic-acoustic media. A velocity-strain formulation is used, which allows for the solution of the acoustic and elastic wave equations within the same unified framework. Careful attention is directed at the derivation of a numerical flux that pr...

متن کامل

Application of Nodal Discontinuous Galerkin Finite Element Method for 2d Nonlinear Elastic Wave Propagation

In order to solve the elastic wave equation in heterogeneous media with arbitrary high order accuracy in space on unstructured meshes, a nodal Discontinuous Galerkin Finite Element Method (DG-FEM) is presented, which combines the geometrical flexibility of the Finite Element Method and strongly nonlinear wave simulation capability of the Finite Volume Method. The equations of nonlinear elastody...

متن کامل

Finite Difference and Discontinuous Galerkin Methods for Wave Equations

Wang, S. 2017. Finite Difference and Discontinuous Galerkin Methods for Wave Equations. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1522. 53 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9927-3. Wave propagation problems can be modeled by partial differential equations. In this thesis, we study wave propagation in fluids and...

متن کامل

Seismic Wave Simulation for Complex Rheologies on Unstructured Meshes

The possibility of using accurate numerical methods to simulate seismic wavefields on unstructured meshes for complex rheologies is explored. In particular, the Discontinuous Galerkin (DG) finite element method for seismic wave propagation is extended to the rheological types of viscoelasticity, anisotropy and poroelasticity. First is presented the DG method for the elastic isotropic case on te...

متن کامل

High Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation

This paper deals with a high-order accurate Runge Kutta Discontinuous Galerkin (RKDG) method for the numerical solution of the wave equation, which is one of the simple case of a linear hyperbolic partial differential equation. Nodal DG method is used for a finite element space discretization in ‘x’ by discontinuous approximations. This method combines mainly two key ideas which are based on th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011